Comments by Rafael Repullo on

Monetary Easing, Investment and Financial Instability

Viral Acharya and Guillaume Plantin

First Annual Research Conference

Bank of Spain, 1 September 2017

Purpose of paper

- Optimal monetary policy with financial stability concerns
- Specifically: Construct a model that explains three facts
 - \rightarrow Lax monetary policy
 - \rightarrow High payouts of firms to shareholders
 - \rightarrow Excessive risk-taking

Model overview (i)

• OLG model

 \rightarrow 2-period lived workers and entrepreneurs

 \rightarrow Monetary and fiscal authority

- Workers
 - \rightarrow Unit endowment of labor when young
 - \rightarrow Can supply labor to market or work in private production
 - \rightarrow Private production yields current output
 - \rightarrow Wages paid when young
 - \rightarrow Only interested in consumption when old

Model overview (ii)

- Entrepreneurs
 - \rightarrow Demand labor to produce future output
 - \rightarrow Utility depends on sum of current and future consumption
 - \rightarrow Need to borrow to pay wages + current consumption
- Monetary authority
 - \rightarrow Can set the <u>real</u> interest rate
 - \rightarrow Can resort to fiscal authority to balance its books

Main results (i)

- Characterize steady state equilibrium
- Analyze effects of increase in market supply of labor
 - \rightarrow With flexible wages: Central bank does nothing
 - \rightarrow With fixed wages: Central bank reduces the real rate
 - \rightarrow Increases borrowing by entrepreneurs

Main results (ii)

- To address implications for financial stability
 - \rightarrow Modified model with 3-period lived entrepreneurs
 - \rightarrow Output produced at t + 2, but wages paid at t
 - \rightarrow Borrowing has to be rolled over at t + 1
 - \rightarrow Exogenous probability of not being able to borrow at t + 1
- A reduction in real rate by central bank
 - \rightarrow Increases borrowing by entrepreneurs
 - → Increases rollover risk: Financial instability
 - \rightarrow But central bank can act as lender of last resort

Main comments (i)

- Model assumes that central bank can set the <u>real</u> interest rate
 - \rightarrow Assumption is becoming popular in recent literature
 - \rightarrow But is nevertheless quite restrictive
 - \rightarrow Link between nominal and real rates may not be trivial

Main comments (ii)

- Entrepreneurs' preferences produce jumps in consumption
 - \rightarrow Entrepreneurs' consumption decision problem

$$\max_{(c_0,c_1)}(c_0 + c_1)$$
 subject to $c_0 + \frac{1}{r}c_1 = y$

 \rightarrow Solution

$$c_0(r) = \begin{cases} 0, & \text{if } r > 1 \\ y, & \text{if } r < 1 \end{cases}$$

• A reduction in *r* below 1 leads to jump in borrowing

 \rightarrow Large effects of monetary policy on consumption \rightarrow and on financial stability

Main comments (iii)

- Discussion on financial stability is pretty ad hoc
 - \rightarrow Based on exogenous probability of rollover
 - \rightarrow It would be desirable to have something more structural

What am I going to do?

- Present a slightly different version of the model
 - \rightarrow No OLG structure
 - \rightarrow No jumps in the consumption of entrepreneurs
 - \rightarrow Parametric specification of production and utility functions
- Focus on the working of monetary policy

 \rightarrow Ignoring the discussion on financial stability

Part 1

Model with flexible wages

Model setup

- Two dates (t = 0, 1)
- Two consumption goods (at dates t = 0, 1) plus labor at t = 0
- Two types of private agents: workers and entrepreneurs
- Markets available at t = 0
 - \rightarrow Labor market with wage *w* (in terms of the good at *t* = 0)
 - \rightarrow Bond market with gross real rate *r*

Workers

- Continuum of workers characterized by
 - \rightarrow Unit labor endowment at t = 0
 - \rightarrow Fraction *l* supplied to market at wage *w*
 - \rightarrow Fraction 1 *l* invested in private production
 - \rightarrow Production function g(1 l) of good at t = 0
 - \rightarrow Only interested in consumption at t = 1

$$c_w = r \max_l [wl + g(1 - l)]$$

Entrepreneurs

• Continuum of entrepreneurs characterized by

 \rightarrow Production function *f*(*l*) of good at *t* = 1

 \rightarrow Utility function

 $u(c_0, c_1) = \ln c_0 + \ln c_1$

• Labor demand and consumption decisions

$$\max_{(l,c_0,c_1)} \left[\ln c_0 + \ln c_1 \right]$$

subject to $c_0 + wl = \frac{1}{r} [f(l) - c_1]$

Parametric assumptions

• Workers' production function

$$g(1-l) = \rho\sqrt{1-l}$$

 \rightarrow where ρ is productivity parameter used to shock the model

• Entrepreneurs' production function

 $f(l) = 2\sqrt{l}$

Workers' decision rules

• Labor supply function

$$l(w) = \arg\max_{l} [wl + g(1-l)] = 1 - \frac{\rho^2}{4w^2}$$

 \rightarrow Increasing in wage *w*

• Savings function

$$s(w) = \max_{l} [wl + g(1-l)] = w + \frac{\rho^2}{4w}$$

 \rightarrow Increasing in wage w (for l(w) > 0)

Entrepreneurs' decision rules (i)

• Labor demand function

$$l(w,r) = \arg\max_{l} \left[\frac{1}{r}f(l) - wl\right] = \frac{1}{(wr)^{2}}$$

 \rightarrow Decreasing in wage *w*

 \rightarrow Decreasing in real rate *r*

• Current consumption function

$$c_0(w,r) = \frac{1}{2} \left[\frac{1}{r} f(l) - wl \right] = \frac{1}{2wr^2}$$

 \rightarrow Decreasing in wage *w*

 \rightarrow Decreasing in real rate *r*

Entrepreneurs' decision rules (ii)

• Borrowing function

$$b(w,r) = c_0(w,r) + wl(w,r) = \frac{3}{2wr^2}$$

- \rightarrow Decreasing in wage *w*
- \rightarrow Decreasing in real rate *r*

Equilibrium conditions

• Labor market

$$l(w) = l(w, r)$$

• Bond market

$$s(w) = wl(w) + g(1 - l(w)) = wl(w, r) + c_0(w, r) = b(w, r)$$

 \rightarrow Using labor market equilibrium, this simplifies to

$$\underbrace{g(1-l(w))}_{=} = \underbrace{c_0(w,r)}_{=}$$

Workers' output at t=0

Entrepreneurs' consumption at t=0

Equilibrium prices and quantities

- Wage: $w^* = \sqrt{5}\rho / 2$
- Real rate: $r^* = 1 / \rho$
- Labor supplied to market: $l^* = 4/5$
- Workers' consumption (and utility): $c_w^* = u_w^* = 3 / \sqrt{5}$
- Entrepreneurs' consumption at t = 0: $c_0^* = \rho / \sqrt{5}$
- Entrepreneurs' consumption at t = 1: $c_1^* = 1/\sqrt{5}$
- Entrepreneurs' utility: $u_e^* = \ln \rho \ln 5$

Shock to the workers' production function

• Consider a negative shock to workers' production function

 \rightarrow Going from $\rho = 1$ to $\rho = \frac{1}{2}$

• Comparison between the two equilibria

	w^*	r*	l*	u_w^*	c_0^*	c_1^{*}	u_e^*
$\rho = 1$	1.12	1	0.8	1.34	0.45	0.45	-1.61
$\rho = 1/2$	0.56	2	0.8	1.34	0.22	0.45	-2.30

Part 2

Model with fixed (real) wages

Fixed wages (i)

- Suppose that following the reduction in ρ wages do not fall
 - \rightarrow Excess supply of labor
 - \rightarrow No change in decision rules of entrepreneurs
 - \rightarrow Employment determined by labor demand $l(w^*, r)$

Fixed wages (ii)

- What will happen to the real rate?
 - \rightarrow Workers' output

$$\rho\sqrt{1-l(w^*,r)}$$

 \rightarrow Equilibrium condition

$$\rho \sqrt{1 - l(w^*, r)} = c_0(w^*, r)$$

 \rightarrow For $\rho = \frac{1}{2}$ we have r = 1.17

Equilibrium with fixed wages

- Comparison between the three equilibria
 - \rightarrow Third row corresponds to equilibrium with fixed wages

	w^*	r^*	l*	u_w^*	c_0^*	c_1^{*}	u_e^*
$\rho = 1$	1.12	1	0.8	1.34	0.45	0.45	-1.61
$\rho = 1/2$	0.56	2	0.8	1.34	0.22	0.45	-2.30
$\rho = 1/2$	1.12	1.17	0.58	1.14	0.32	0.38	-2.11

Monetary easing (i)

- Suppose now that central bank reduces real rate to r = 1
 - \rightarrow Fourth row corresponds to new equilibrium

	w^*	r*	l*	u_w^*	c_0^{*}	c_1^{*}	u_e^*
$\rho = 1$	1.12		0.8	1.34	0.45	0.45	-1.61
$\rho = 1/2$	0.56	2	0.8	1.34	0.22	0.45	-2.30
$\rho = 1/2$	1.12	1.17	0.58	1.14	0.32	0.38	-2.11
$\rho = 1/2$	1.12		0.8	1.12	0.45	0.45	-1.61

Summing up

- Monetary easing when wages are rigid downwards leads to
 - \rightarrow Increase in labor supplied to the market
 - \rightarrow Reduction in workers' consumption and utility
 - \rightarrow Increase in entrepreneur's consumption and utility
 - \rightarrow Hence, <u>not</u> Pareto improving

Part 3 Discussion

Discussion

- Two questions
 - \rightarrow How can the central bank reduce the real rate?
 - \rightarrow What are the implications for the real economy

How can central bank reduce the real rate?

- In the equilibrium with fixed wages the real rate is r = 1.17
 - \rightarrow To reduce the real rate to r = 1 bond market has to clear
 - \rightarrow But for r = 1 there is an excess demand for savings
 - \rightarrow Central bank has to act as a supplier of savings
- Recall that bond market equilibrium simplifies to

 $\underbrace{g(1-l(w^*,r))}_{\text{Workers' output}} = \underbrace{c_0(w^*,r)}_{\text{Entrepreneurs'}}$

at t=0

consumption at t=0

Bond market equilibrium under fixed wages

Bond market equilibrium under fixed wages

Bond market equilibrium under fixed wages

Implementing monetary easing (i)

• To implement the reduction in the real rate

 \rightarrow Central bank has to be able to lend to the entrepreneurs

- Central bank is effectively a warehouse
 - \rightarrow that stores the consumption good
 - \rightarrow and lends it to the entrepreneurs

Implementing monetary easing (ii)

• Where do the goods in warehouse come from?

 \rightarrow Taxing an initial generation of workers

• Central bank may get profits or losses (zero when r = 1)

 \rightarrow Transferred to workers or entrepreneurs

• Connection between monetary and fiscal authorities

Implications for the real economy

• Construct the utility possibility frontier

 $\max c_w$

subject to: $c_w + c_1 = f(l)$ $c_0 = g(1-l)$ $\ln c_0 + \ln c_1 = u_e$

• Plot frontiers for from $\rho = 1$ to $\rho = \frac{1}{2}$

 \rightarrow Locate the different equilibrium points in utility space

Summing up

- Equilibria with flexible wages are located on the frontiers
- Equilibrium with fixed wages is Pareto inefficient
- Equilibrium with monetary easing is <u>outside</u> the frontier
 → Central bank brings something that was not before
- Equilibrium with monetary easing is <u>not</u> Pareto improving
 → Distributional effects of monetary policy